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Abstract. We study the systematics and evolutionary history of the Afrotropical butterfly genus Mylothris 
(Lepidoptera: Pieridae) based on six gene regions (COI, EF1a, GAPDH, MDH, RpS5 and wingless). We find 
that the genus can be placed into five species groups, termed the jacksoni, elodina, rhodope, agathina and hila-
ra groups. Within these species groups, we find that many species show very little genetic differentiation based 
on the markers we sequenced, suggesting they have undergone rapid and recent speciation. Based on second-
ary calibrations, we estimate the age of the crown group of Mylothris to be about 16 million years old, but that 
many of the species level divergences have happened in the Pleistocene. We infer that the clade has its origin 
in the forests of the Eastern part of Central Africa, and has spread out from there to other regions of Africa.

Introduction
Studies on the systematics of Afrotropical butterflies using molecular data have been increasing in 
number in the past decade (Kodandaramaiah and Wahlberg 2007; Aduse-Poku et al. 2009; Nazari 
et al. 2011; Price et al. 2011; van Velzen et al. 2013; Aduse-Poku et al. 2017), giving us a better 
understanding of their evolutionary histories in one of the diversity hotspots of the planet. Many 
genera are endemic to the continent, although there are clear connections to the Oriental region 
(Kodandaramaiah and Wahlberg 2007; Aduse-Poku et al. 2009; Aduse-Poku et al. 2015; Sahoo 
et al. 2018; Toussaint et al. 2019) and even to the Neotropical region (Silva Brandão et al. 2008). 
Genera in the family Pieridae have not been the focus of many studies to date. So far only two 
pierid genera have been studied using molecular approaches in any detail, Colotis Hübner, 1819 
(Nazari et al. 2011) and Pseudopontia Plötz, 1870 (Mitter et al. 2011). Here we investigate the 
systematics and evolutionary history of the Afrotropical pierid genus Mylothris Hübner, 1819.

The range of Mylothris includes most of the African continent south of the Sahara, extending 
to nearby islands such as Madagascar and the Comoros in the east, and to Bioko and São Tomé e 
Príncipe in the west. A single species flies alongside other pierid species belonging to the Afrotrop-
ical fauna in south west Arabia. It is speciose: a revision of the genus by one of the authors (HWG) 
is in progress and will list 105 species, a number of them new, many of them in turn divided into 
several subspecies (Warren-Gash in press).
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A distinguishing feature of the genus, as with the related Catasticta Butler, 1870 in the Neotrop-
ics (Braby and Nishida 2010) and Delias Hübner, 1819 in the Australasian region (Braby 2006), 
is that the hostplants, with one known exception, are members of parasitic mistletoes belonging 
to the family Loranthaceae. This in turn determines where and how plentifully Mylothris species 
are found. Their foodplants are arboreal epiphytes and so they are insects of the canopies – unlike 
most Afrotropical pierids, which breed on low-growing shrubs such as Capparis Linnaeus, 1758, 
and many of which occur in more open, drier biotopes. Thus Mylothris species diversity is richest 
in the main African forest belt, with some species spreading into the forest-savannah mosaic and 
anthropogenic biomes including suburban gardens.

Two other consequences follow. The first is that, since Loranthaceae occur most frequently near 
the crown of the tree, many of the tropical forest species fly high, and some of them are seldom 
seen, accentuating their rarity in institutional collections. Secondly, they are particularly vulnerable 
to primary forest degradation.

Typically, Mylothris eggs are laid in a group on the underside of a leaf of the hostplant, and the 
larvae when they hatch are gregarious. The length of the lifecycle depends on the species and the 
biome or region. In southern Africa they follow the seasons in line with their foodplant, as they do 
in colder (usually montane) climates further north. In less seasonal biotopes, adults can be on the 
wing at any time of year (Warren-Gash in press).

In appearance Mylothris are a remarkably homogeneous group. In adults of the M. jacksoni spe-
cies group, the hindwing is yellow and the forewing usually mostly white. The other clades typically 
show some orange (sometimes yellow) at the base of the forewing on one or both surfaces becoming 
white distally, with a greater or lesser black distal margin. There are exceptions, but they are similar 
enough to have baffled taxonomists over the years, leading to groups of species being lumped togeth-
er under a single name in some cases and, no less frequently, names erected to describe what are no 
more than individual variations. If that were not enough, cryptic rings of different species that in adult 
morphology are externally almost indistinguishable, can be found flying together, most frequently 
in the two main areas of diversity: the Albertine Rift and central Cameroon (Warren-Gash in press).

The forthcoming revision (Warren-Gash in press) will look at all these issues in more detail 
based on morphological characters. Here we aim to investigate whether molecular data can shed 
light on species delimitations and their relationships. As yet undescribed species are here named 
nsp1 to nsp4. They will be formally described in Warren-Gash (in press).

Material and methods
We attempted to sample as many species as possible, and for selected species, as many populations as 
possible. We included 52 out of 105 species and a total of 235 individuals in our analyses (see Suppl. 
material 1: Table S1). Most specimens come from the private collection of HWG, with a few specimens 
taken from the collections of the African Butterfly Research Institute in Nairobi, Kenya. The specimens 
are part of a large taxonomic revision of Mylothris (Warren-Gash in press). In addition we included 23 
outgroups from the subtribe Aporiina, taken from a previous publication (Wahlberg et al. 2014).

DNA was extracted from 2–3 legs of dried museum specimens using the Nucleospin Tissue Kit 
(Macherey-Nagel, Düren, Germany). From these specimens, we sequenced the mitochondrial COI 
gene and up to 5 nuclear genes (EF1a, GAPDH, MDH, RpS5 and wingless). Primers and laboratory 
protocols followed Wahlberg and Wheat (2008) in all cases. Successful PCR products were cleaned 
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enzymatically with exonuclease and FastAP (Thermo Fisher Scientific, Hampton, NH, USA) and sent 
to Macrogen Europe (Amsterdam, the Netherlands) for Sanger sequencing. The resulting chromato-
grams were examined by eye using BioEdit (Hall 1999). All six genes are protein-coding, thus align-
ments were trivial. The aligned sequences were curated and managed in VoSeq (Peña and Malm 2012).

Phylogenetic analyses were carried out using IQ-TREE 1.6.10 (Nguyen et al. 2015) in a maxi-
mum likelihood framework. The full dataset was analysed. The data were partitioned by gene and 
analysed with the partition finding (Chernomor et al. 2016) and model finding (Kalyaanamoorthy 
et al. 2017) algorithms of IQ-TREE (using the command MFP+MERGE). Robustness of the re-
sults were assessed using UFBoot2 (Hoang et al. 2018) and a SH-like approximate likelihood ratio 
test (Guindon et al. 2010). Analyses were run on the CIPRES server (Miller et al. 2010).

Timing of divergence was estimated using a reduced dataset. One specimen per species with the most 
DNA sequence data available was chosen for this analysis. The dataset was analysed using BEAST 
v1.8.3 (Drummond et al. 2012), partitioned according to the results of the IQ-TREE analysis. Since 
BEAST does not offer the possibility to use the TIM2 model, the model for COI was set to the GTR+G 
model, the other two partitions were assigned models according to the IQ-TREE results (see below). 
The nucleotide models and clock models were unlinked between partitions. The tree prior was set to 
the birth-death model and a lognormal relaxed clock was implemented. Monophyly of Aporiina was 
enforced. Four secondary calibration points were taken from Chazot et al. (2019) and were modeled 
with a normal prior. The root was set to 42 million years ago (Mya) ± 5 million years (My), the crown 
age of Aporiina to 36 Mya ± 4 My, the most common recent ancestor of Mylothris and Aporia Hübner, 
1819 to 28 Mya ± 3.5 My, and the most recent common ancestor of Catasticta and Melete Swainson, 
1831 to 20 Mya ± 3 My. The analyses were run four times independently at 10 million generations per 
run sampling at 10,000 generation intervals. Convergence was examined using Tracer v1.7 (Rambaut 
et al. 2014). The four runs were combined after a burnin of 1 million generations and a summary tree 
was generated using the maximum a posteriori tree and mean estimated times of divergence.

The historical biogeography of the group was inferred using the R package BioGeoBEARS 
v1.1.1 (Matzke 2014). The chronogram resulting from the BEAST analysis (see results section) 
with the outgroups pruned, was used for this analysis. Owing to the open conceptual debate on 
model comparisons in BioGeoBEARS (Ree and Sanmartín 2018), our ancestral range analysis were 
performed under the dispersal – extinction – cladogenesis (DEC) model (Ree et al. 2005; Ree and 
Smith 2008). DEC is a likelihood-based procedure that models range evolution as a discrete-valued 
process, specifying instantaneous transition rates between geographical ranges along the branches 
of a phylogenetic tree. Consequently, DEC requires each sampled taxon be assigned with one or 
more geographic range(s), reflecting its present distributional range. The geographic distributions 
of Mylothris were extrapolated from the literature and the degree of endemism of local species, 
which is highest in West Africa and Madagascar. The following regions were used in the analysis: 
A, West Africa; B, West Central Africa; C, East Central Africa; D, East Africa; E, South Africa; 
F, Malagasy Region (see inserted map in Figure 6 of Results section). B and C are closer than the 
others, corresponding roughly to the central forest belt, but with two main centres of endemism: 
the Cameroon highlands and the montane zone just west of the Albertine Rift. In all dispersal rate 
scaler matrices, dispersal events between adjacent areas were not scaled (dispersal d = 1.0). A scaler 
of 0.5 was applied for dispersal events between areas separated by an ocean barrier. A scaler of 0.25 
was applied for dispersal events between areas separated by a third region and a water barrier (see 
Suppl. material 2: Table S2). The maximum number of areas per ancestral state was fixed to four.
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Results

The dataset consisted of 5168 aligned base pairs. The IQ-TREE partition finding analysis combined 
EF1a, GAPDH, MDH, and RpS5 into one partition and assigned the GTR+I+G model to it. COI was 
kept as its own partition with TIM2+I+G model assigned to it, as was wingless with the K2P+G model.

We find Mylothris to be a well supported monophyletic group (UFB = 100, SH-like = 100), 
that is sister to a clade of Neotropical and Palaearctic/Oriental taxa (Figure 1). We identify five 
major clades that are strongly supported (the exception being the hilara clade with UFB = 87, SH-
like = 90): the jacksoni, elodina, rhodope, agathina and hilara clades. We find the jacksoni clade 
to be sister to the rest of Mylothris, with elodina being the next lineage to diverge, followed by the 
rhodope clade, and finally the agathina and hilara clades being sister to each other.

Relationships within the jacksoni clade show four lineages (Figure 2), with M. ducarmei Hecq, 
2001 being sister to the rest, followed by M. crawshayi Butler, 1896 and finally M. trimenia Butler, 
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Figure 1. Relationships of the five species groups in Mylothris based on a maximum likelihood analysis of 5 
gene regions. Numbers below branches are branch support values (SH-like / Ultrafast Bootstrap).
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1869 sister to a clade comprising five species with unresolved relationships. These five species, M. 
jacksoni Sharpe, 1891 M. sagala, Grose-Smith, 1886 M. knutssoni Aurivillius, 1891 M. nagichota 
Talbot, 1944 and M. seminigra d’Abrera, 1980 show very little genetic differentiation.

Only M. elodina Talbot, 1944 is found in the elodina clade (Figure 2). The eight individuals we 
sequenced show very little genetic differentiation, but a relatively long branch leads to them. The 
position of the lineage is not highly supported (UFB = 79, SH-like = 85.3), and there is a possibility 
that further data might place it as the sister to the rest of Mylothris.

The rhodope clade comprises 14 sampled species (Figure 3), which are genetically very close to 
each other. Indeed, M. kiwuensis Grunberg, 1910, M. knoopi Hecq, 2005, M. nsp2 and M. jaopura 
Karsch, 1893 are genetically identical at all the sequenced loci. Mylothris uniformis Talbot, 1944 
and M. nsp3 are also intermixed and genetically extremely close to each other. Other species are 
reciprocally monophyletic, but genetically very close to their sister species, such as M. nsp4 + M. 
rhodope Fabricius, 1775 and M. latimargo Joicey & Talbot, 1921+ M. zairiensis Berger, 1981.
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Figure 2. Relationships of sampled specimens within the jacksoni and elodina groups. Numbers below 
branches are branch support values (SH-like / Ultrafast Bootstrap).
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Figure 4. Relationships of sampled specimens within the agathina group. Numbers below branches are 
branch support values (SH-like / Ultrafast Bootstrap).
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Figure 5. Relationships of sampled specimens within the hilara group. Numbers below branches are branch 
support values (SH-like / Ultrafast Bootstrap).
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Figure 6. Timing of divergence and historical biogeographic analyses of Mylothris. Inset shows the biogeo-
graphical regions used for the latter.
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The agathina clade has 16 sampled species in it, showing similar patterns of genetic differenti-
ation as the previous clades (Figure 4). Mylothris agathina Cramer, 1779 and M. chloris Fabricius, 
1775 are genetically indistinguishable (based on the markers used here), as are M. sulphurea Au-
rivillius, 1895, M. holochroma Talbot, 1944, M. interposita Joicey & Talbot, 1921 and M. auran-
tiaca Rebel, 1914. The Madagascan M. phileris Boisduval, 1833 and Comoro Islands M. ngaziya 
Oberthur, 1888 are found to be closely related to the M. agathina/chloris clade.

The hilara clade comprises 15 sampled species, and again similar patterns of little genetic dif-
ferentiation are found among the species as in the other clades (Figure 5). The species M. sjostedti 
Aurivillius, 1895, M. similis Lathy, 1906, M. poppea Cramer, 1777 and M. erlangeri Pagenstecher, 
1902 appear to be distinct from each other and the rest, while the rest of the species form a complex 
set of relationships with shared haplotypes and minor monophyletic groups (e.g. M. nsp1), which 
are very closely related genetically, even if morphological characters are clearly distinct.

Our timing of divergence analysis suggests that the crown clade of Mylothris began diversify-
ing around 16 Mya (Figure 6) after diverging from their sister group some 10 My earlier. The five 
major clades diverged from each other between 16 and 8 Mya, during the mid to late Miocene, but 
almost all species level divergences have happened in the Pleistocene. Our ancestral range analysis 
recovers an origin of Mylothris in the East Central Africa. All the five major clades of the group 
are also inferred to have been derived from ancestors distributed in the East Central Africa. The 
ancestors of the extant species in Madagascar and Comoros islands are estimated to have range 
expanded from mainland Africa only recently (~2 Mya).
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Discussion

Mylothris are a distinct and well-supported lineage of African pierids, not closely related to any other 
pierids on that continent. There are five clear species groups within the genus. Of the five groups, the 
rhodope, agathina and hilara species groups are more closely related to each other than to the other two 
groups. Based on our sampling of genes, it appears that the jacksoni group is sister to the rest, but with 
poor support. Indeed, in some preliminary analyses of our data, the elodina group came out as sister to 
the rest, and this may be the case with further gene and taxon sampling. The very different morphology of 
elodina, reflected also in the male genitalia, is a possible indicator that it is sister to the rest of Mylothris.

It is highly probable that we have uncovered all major species groups. The unsampled species are 
all, as far as we can tell, clearly morphologically related to already sampled species. The sampling 
process was conducted in the context of a revision of the genus (Warren-Gash in press), and large 
quantities of material were examined and dissected, including many specimens too old to be readily 
amenable to molecular sequencing. The unsampled species showed no differences which were impor-
tant enough in terms of morphology or genitalia to suggest the likely existence of other species groups.

Regardless of the relationships of the major species groups, the biogeographic history of the 
deeper clades appears to be clear. We infer from our analyses that the group originated in East Cen-
tral Africa, and from there spread to other parts of Africa. The fragmentation of the forests in the 
Miocene and Pleistocene may have contributed to the diversification of the group, perhaps by caus-
ing populations to be fragmented and isolated from each other. This appears to be a common pattern 
in forest dwelling butterflies of Africa (Aduse-Poku et al. 2009; van Velzen et al. 2013; Dhungel 
and Wahlberg 2018), but the mechanisms leading to their diversification are still poorly understood.

Within the species groups of Mylothris we find genetic variation between some of the species to 
be minimal, and indeed some species share the same haplotypes for the markers sequenced in this 
study. The infra-specific variation within Mylothris species is, however, considerable, and that has 
been given full weight both in the preparation of this paper and the forthcoming revision. A number 
of morphs previously considered as species have been synonymised in consequence (Warren-Gash 
in press). Nonetheless, such close genetic similarity needs explanation if the specific separation of 
these groups is to be justified.

There is no single answer to why some species are genetically identical for the markers we have 
sequenced. In one case – Mylothris agathina and M. chloris – they are sympatric with no evidence 
of interbreeding, and in addition the female genitalia of the two are clearly and consistently differ-
ent. In the M. jacksoni group, the wing patterns vary, as does the biome in which they fly. Many of 
the scarcer species, both sampled and unsampled, are montane vicariants; others fly sympatrically 
without interbreeding and in several cases where the early stages have been observed, the larvae 
are more distinct than the adults and use different larval foodplants (e.g. M. jacksoni and M. saga-
la). They not only look different but in their foodplant preferences behave differently.

In other groups, there are examples of species which fly together in at least a part of their range, 
which are morphologically similar in one sex (usually the male) but distinctively different in the 
other (e.g. M. sulphurea basalis Aurivillius, 1906 and M. aurantiaca Rebel, 1914, with overlap-
ping ranges in the north-east of the DRC).

A group of more than a dozen species in the hilara group, which have in common a red basal patch at 
the base of the forewing and broadly similar (but not identical) male genitalia, is found across the width 
of the main forest belt. A few are very local. In the rugged terrain of the mountains west of the Albertine 



Nota Lepi. 43: 1–14 11

Rift, they are separated more by terrain than geographical distance, but in those few instances where 
they overlap, they do not interbreed. At lower altitudes it is quite usual for several species in the group 
to fly together in varying combinations, without any evidence of cross-fertilisation. In the Albertine Rift 
widely varying female forms are found which occur nowhere else. Morphology shows up what appear 
to be widely separated vicariants of similar species in east and west Africa, more akin to each other than 
those flying in between. They almost certainly use different larval foodplants. Some are tied to strictly 
forest environments (e.g. M. continua); others prefer more open country (e.g. M. rueppellii Koch, 1865)

The case of the jaopura complex, with nine named and mostly allopatric species, offers a differ-
ent challenge. Those sequenced are indistinguishable on that basis, and the genitalia, while distinc-
tive within the complex, are very similar. However, morphology in terms of size, wingshape and 
markings is distinctive in each case, as very often is the biome in which they occur. Where they 
overlap (e.g. M. kiwuensis and M. nsp2), they do not interbreed. Again, and given the very different 
environments in which they occur, it is highly probable that their larval foodplants also differ. What 
they have in common is that in practically every case they mimic a Mylothris species in another 
group, sometimes so well that they can only be separated with certainty by dissection or sequencing.

Given the factors discussed above, the markers we have used are probably not sufficiently var-
iable to differentiate the closely related species. It is likely that a genomic approach would shed 
further light on the species boundaries, as has been found in recent studies on nymphalid butterflies 
(Dinca et al. 2019; Campbell et al. 2020). Our results do however suggest that radiation within 
these groups is likely to be recent. Similar minimal genetic differentiation is found in the pierid 
genus Colias Fabricius, 1807 (Wheat and Watt 2008; Laiho and Ståhls 2013), but interestingly not 
in the closely related genus Delias (Braby et al. 2007; Müller et al. 2013). The reasons behind the 
close genetic relationships of several groups of species is not entirely clear, but may have to do 
with the repeated contraction and expansion of the forests in Africa, especially during the Miocene 
and Pleistocene. Similar patterns appear to be the case in other forest specialist genera of the family 
Nymphalidae: Charaxes Ochsenheimer, 1816 (Aduse-Poku et al. 2009), Cymothoe Hübner, 1819 
(van Velzen et al. 2013) and Euphaedra Hübner, 1819 (Dhungel and Wahlberg 2018). Mylothris 
and the nymphalid genera cited appear to be going through rapid speciation in African forests and 
they require further study to understand the driving mechanisms
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