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Abstract. Butterfly wings play a crucial role during flight, but also in thermoregulation, intraspecific signal-
ling and interaction with predators, all of which vary across different habitat types and may be reflected in 
wing morphology or colour pattern. We focused on the morphological variability of Erebia medusa in order to 
examine patterns and variations in the colouration and morphology of wings from areas representing different 
habitat types with different environmental characteristics. The barrier (larger fragments of forest) between 
populations of Erebia medusa along the elevation gradient of Kojšovská hoľa might be the aspect that hinders 
the movement of the population. The wing characteristics (shape, size, spotting) of males representing popu-
lations of Carpathian mountain habitats (Volovské vrchy, Ondavská vrchovina) located at different elevations 
were measured. The forewing shape analysis, using geometric morphometry based on 16 landmarks, showed 
significant differences between populations from different elevation levels. The pattern of the forewings also 
varied between populations. Morphological changes among individuals of Erebia medusa populations along 
the elevation gradient in the Carpathian Mountains showed that in the cold, highland habitats we observed 
smaller, narrower and elongated forewings with a reduced number of spots, while males from warmer habitats 
at low elevations had rounder, larger and more spotted forewings.

Introduction
The ecological role of individual butterfly species is largely reflected in the wings, whose 

shape, size and colour pattern often have adaptive value and provide information about important 
differences, even at the population level (Altizer and Davis 2010; Mega 2014). The variability of 
butterfly wing shape or size, which reflects flight performance (Cespedes et al. 2015; Le Roy et 
al. 2019a, b), can even provide insight into the suitability of the habitat (Pellegroms et al. 2009; 
Chazot et al. 2016) and the dispersal rate (Wells et al. 2018; Taylor-Cox et al. 2020). The final 
wing shape and size of adults depends on conditions of larval development, which can be affected 
by aggregation behaviour (Allen 2010; Montejo‐Kovacevich et al. 2019; Palmer et al. 2019) but 
also by environmental conditions (Karl and Fischer 2008; Gibbs et al. 2011; Van Dyck et al. 2016; 
Palmer et al. 2019). Phenotypic clines along environmental gradients can sometimes be explained 
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by ecological rules, whose use on insects can be debatable (Blanckenhorn and Demont 2004). 
Bergmann’s rule is the classic ecogeographic principle that relates the body size of endotherms 
with environmental temperature (or latitude) (Shelomi 2012). The converse of Bergmann’s rule 
(Park 1949; Mousseau 1997), based on the season length effect, predicts a decrease of body size 
with elevation. Various clines in body size can also be explained by a combination of several 
other theories or hypotheses, such as the north-south cline theory (Nylin and Svärd 1991) or the 
“temperature – size rule” (Angilletta and Dunham 2003).

The wing eyespot pattern, which may serve different functions, can also play an irreplaceable 
role. While the pattern on the dorsal side is usually used for intraspecific communication (Oliver 
et al. 2009; Westerman et al. 2012; Tokita et al. 2013), the eyespots on the ventral side are rather 
used to deceive predators by intimidation or deflection by distracting predators from the vital, 
vulnerable body parts (Lyytinen et al. 2003; Stevens 2005; Stevens et al. 2007; Kodandaramaiah 
2011; Prudic et al. 2015; Ho et al. 2016). Moreover, in several butterfly species, wing colour mod-
ifications are related to thermoregulation (Dennis and Shreeve 1989; Taylor-Cox et al. 2020).

Previous studies (Nice et al. 2005; Jugovic et al. 2018) have demonstrated that populations 
separated by time, space or geographical barrier may undergo changes in the shape, size and col-
ouration of external traits (Tatarinov and Kulakova 2013). Restrictions of the movement and mi-
gration of butterfly species have an impact on the intensity and direction of gene flow between 
populations (Andrews 2010; Slatkin and Excoffier 2012). Characterisation of the morphological 
traits of E. medusa, a species inhabiting a wide range of environments, can provide insight into the 
selection pressures that affect adaptive responses (Cespedes et al. 2015; Taylor-Cox et al. 2020).

For the sedentary butterfly Erebia medusa, high intraspecific variability (numerous subspecies) 
and mosaic distribution throughout most of its Euro-Siberian region is characteristic (Warren 1936; 
Schmitt et al. 2000; Polic et al. 2014). Our study focused especially on the influence of elevation 
differences in the Carpathian region on intraspecific variation. For this species, large fragments of 
forests (Schmitt et al. 2000) may be a serious obstacle for movement. According to the study by 
Kleckova and Klecka (2016), E. medusa prefers a warm environment, so the adaptations to high 
elevation habitats needed for the activity of this species can be expected. Lower activity due to low 
temperature can cause a decrease of chances of escape; therefore, selection will act against some 
individuals (large sized or with large eyespots) (Dennis et al. 1986). A higher number of eyespots, 
which are important especially in escape mechanisms, may reflect increased rates of predation with 
rising temperature (Hillebrand et al. 2009; Vucic-Pestic et al. 2011) but also by sexual selection 
(Tokita et al. 2013). Based on morphological features (wing size, shape, colour pattern) examined 
by traditional and geometric morphometry, we focused on the morphological differences between 
populations from habitats differing in elevation and separated by forest areas.

We predicted that the morphological diversity between E. medusa populations would show 
changes that correlate with the average annual temperature, which varies within the eleva-
tion gradient. Our study is based on the hypothesis that i) morphological traits of males (size, 
shape and pattern of forewings) vary in response to various environmental conditions within 
an elevation gradient. We also focused on examining whether ii) the forewing size of individ-
uals from higher elevations is smaller than the forewing size of individuals from lower and 
warmer regions, which induce longer feeding periods during larval development (Juhász et al. 
2016). Further, iii) males from higher elevation habitats with lower temperatures were expected 
to have aerodynamically (narrower, angular) shaped wings that reduce energy costs (Dudley 
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2002; Lentink et al. 2007; Kovac et al. 2012). Finally, iv) a reduction in the eyespot number 
with elevation, involving various selection pressures, was expected (Slabý 1950; Tatarinov and 
Kulakova 2013).

Materials and methods
Studied species

The studied species, the Woodland Ringlet – Erebia medusa (Denis & Schiffermüller, 1775) 
(Lepidoptera, Nymphalidae: Satyrinae) – inhabits areas from lowlands to sub-alpine zones 
(Sonderegger 2005) within a wide elevation range (Warren 1936). This species prefers mesophilous 
habitats, including forest-steppes, pastures, forest meadows, mesophilous meadows and peat bogs 
with a transitional character, but also calcareous grasslands. The presence of this species within 
the (Euro-Siberian) distribution range has been recorded from central France, across Central and 
Eastern Europe (including the Balkans), southern Siberia, Mongolia, northern China to eastern 
Asia. Adults, especially in the western parts of the distribution, occur from late April to June, and 
in highlands can be observed to July or in some areas to early August. Females of this univoltine 
species lay eggs on the tops of foodplant stalks, represented by grasses, such as Nardus spp., 
Festuca spp. (e.g., Festuca ovina) and Bromus spp. (e.g., Bromus erectus). Depending on the habitat 
conditions, the solitary caterpillars hibernate once or twice (at high elevations) (Settele et al. 2008).

Field sampling
One hundred males of E. medusa from localities in the Volovské vrchy Mts. (Kojšovská hoľa – KH 

1246 m a. s. l, Zlatá Idka – ZL 660 m a. s. l) and from the Ondavská vrchovina Mts. (Dobroslava – 
DB 335 m a. s. l) were analysed (Fig. 1). The morphological differences in the populations were stud-
ied along an elevation gradient (See Suppl. material 1: Satellite view) between Kojšovská hoľa, Zlatá 
Idka and Dobroslava. Kojšovská hoľa represents a high elevation habitat with low average temper-
atures (TKH = 5.7 °C); Zlatá Idka and Dobroslava, with higher average temperatures (TZL = 7.4 °C; 
TDB = 8.9 °C), are located at relatively low elevations (see Suppl. material 2: Characteristics of lo-
calities). Habitats of the Volovské vrchy Mts. (Kojšovská hoľa and Zlatá Idka) are separated by large 
fragments of forest. The butterflies were captured from May to July during the years 2018–2020 
using a net, and each location was visited six times per month. All specimens were dried and pinned; 
the wings were detached using forceps (Paučulová et al. 2018) and stored separately in plastic bags.

Analysis of wing pattern and morphology
The front wings of each individual were photographed under standardised light conditions from 

the dorsal side using an Olympus digital camera MODEL NO. C-5060 white zoom DC GV con-
nected to an Olympus SZ2-ILST stereomicroscope at 6.4× magnification using the program Quick-
Photo MICRO 2.1 (Fig. 2)

Male forewing length and width across localities were compared using traditional morphomet-
ric methods (Marcus 1990; Dapporto 2008). Wing shape was analysed using geometric morpho-
metric methods (Prieto et al. 2009; Chazot et al. 2016) in the MorphoJ program (Fig. 2A). The 
geometric morphometric analysis of the forewing was based on 16 landmarks situated at the vein 
intersections and vein terminations (Fig. 2B) (Benítez et al. 2011) to ensure the repeatability of 
each landmark in the highest number of individuals (Habel et al. 2011). The dataset with the exam-
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ined traits was converted to a tps-file using the program tpsUtil, and landmarks were set with the 
program tpsDig2 Version 2.16. Landmarks were set on each individual twice in order to minimise 
measurement errors (Arnqvist and Martensson 1998). To analyse the impact of environment we 
used data on the mean annual air temperature. Information about the temperature conditions at 
each site was monitored using dataloggers (Thermochron iButton device DS1921G) placed on a 
tree trunk (sampling frequency every 4 hours/over a year).

Statistical analyses
The obtained data (untransformed data) was evaluated using the statistical parameters of mean 

(M), standard deviation (SD) and coefficient of variation (CV). The normal distribution of fore-
wing length, width and shape data, separated in terms of side (L, R), was confirmed by normality 
tests (the Shapiro-Wilk W test, the Anderson-Darling A test, the Jarque-Bera JB test) using PAST 
version 3.11 (Hammer et al. 2001); therefore, raw data were used in the subsequent analyses. Data 
on wing colour pattern were tested for normality using the Shapiro-Wilk W test.

Differences in the morphological traits (wing width, wing length) among the sites were assessed using 
ANOVA and Tukey’s pairwise comparisons implemented in PAST version 3.19 (Hammer et al. 2001). 
To estimate the relationship between environmental variables and forewings, we used a multiple linear 
regression model, using forewing length and width as dependent variables and elevation and tempera-
ture as independent variables. Statistical analyses were performed using PAST 3 (Hammer et al. 2001).

The shape of the forewings was compared among the populations following the standard proce-
dure consisting of the location of landmarks (at the costal margin and the nodes of veins), principal 
component analysis (PCA) based on the covariance matrix, canonical variate analysis (CVA) and 
multivariate analysis (ANOVA, Kruskal-Wallis test). ANOVA and CVA were used to compute 
morphological variabilities between the left and right forewing side.

Figure 1. Map of sampling sites. 1. Kojšovská hoľa (1246 m a. s. l); 2. Zlatá Idka (660 m a. s. l); 3. Dobroslava 
(335 m a. s. l).



Nota Lepi. 45: 233–250 237

The forewing shape variation among populations in the dataset were analysed using PCA. The 
results of CVA, which assessed the inter-location differences, were reported as respective P values 
for the Procrustes distances, after permutation tests (10,000 runs). The shape variation among lo-
calities was additionally analysed using ANOVA and post hoc tests. The mentioned statistical and 
geometric morphometric analyses were performed in MorphoJ (Klingenberg 2011), a program for 
geometric morphometrics.

We further analysed pattern elements from digital images and examined the presence and num-
ber of white and black spots on the dorsal side of the forewing margin. We examined the difference 
in the number of spots between populations in the program PAST version 3.1. The non-paramet-
ric Kruskal-Wallis test was performed to test the statistical significance of differences, and post 
hoc  tests were performed to compare the samples. The mean and standard deviation (SD) val-
ues were calculated. Possible correlation between variables was examined using Spearman’s rank 
correlation coefficient  (ρ). The program MorphoJ version 1.01 (Klingenberg 2011) was used to 
compute morphological variabilities among populations, among individuals and between the left 
and right wing-side of one butterfly individual, as well as measurement errors in the wing shapes.

Results
The intraspecific variability of wing morphology among the 100 samples (males) was analysed. All 

individuals were checked for measurement and digitisation errors, which were minimised (Štefánik 
and Fedor 2020). The results of ANOVA revealed statistically significant differences in wing length 
and width (length: F(2, 97) = 17.38, p ˂  0.0001, width: F(2, 97) = 34.19, p ˂  0.0001) between all sites 
(length and width: Tukey’s post hoc test, Kojšovská hoľa (1246 m a. s. l) vs Dobroslava (335 m a. s. l), 
p ˂ 0.001; Kojšovská hoľa (1246 m a. s. l) vs Zlatá Idka (660 m a. s. l) p ˂ 0.001, with the exception 

Figure 2. The left forewing of an Erebia medusa male used for (A) traditional and (B) geometric morpho-
metrics. A. Studied traits. W – width, l – length, B – black pattern, W – white pattern. B. Distribution of 
landmarks (LM 1–16). Landmarks: 1 – intersection of veins at the base of the discal cell, 2 – Discal cell and 
Cu2 intersection, 3 – Discal cell and Cu1 intersection, 4 – Discal cell and M3 intersection, 5 –Discal cell and 
M2 intersection, 6 – Discal cell and M1 intersection, 7 – Discal cell and R4 Intersection, 8 – R4 and R5 inter-
section, 9 – R4 terminally, 10 – R5 terminally, 11 – M1 terminally, 12 – M2 terminally, 13 – M3 terminally, 
14 – Cu1 terminally, 15 – Cu2 terminally, 16 – A terminally.
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of Dobroslava vs Zlatá Idka, which did not show significant differences in the length or width of the 
forewings (p = 0.702). The measurements of the left and right male forewings for each population did 
not differ significantly (width: T-test p ˃ 0.05; length: T-test p ˃ 0.05). A multiple linear regression 
analysis was performed to evaluate the effect of elevation and temperature on the forewings. Our 
results from the multiple linear regression analysis (length: SS = 63.41; F(2, 97) = 16.69; p < 0.0001; 
width: SS = 44.29; F(2, 97) = 33.13; p < 0.0001) showed a positive relationship of forewing length 
and width with the mean annual air temperature (TKH = 5.7 °C; TZL = 7.4°C; TDB = 8.9 °C) (Table 1) 
but not with elevation. The results indicate that the length and width of male forewings increased 
with habitat temperature (summary statistics: μ ± SD; KH: length μ = 21.73 ± 1.34, width μ = 12.26 
± 0.8; ZL: length μ = 23.29 ± 1.01 width, μ = 13.66 ± 0.64; DB: length μ = 23.55 ± 1.61, width 
μ = 13.75 ± 0.94) (Fig. 3A, B). In contrast, the length/width ratio increased with elevation (Fig. 3C).

Table 1. Results of multiple linear regression on variables wing width and length, with temperature and ele-
vation as fixed factors.

Dependent variable Fixed effect Coefficient SE t df p
FW length (intercept) 21.194 1.611 13.154 1 1.22 × 10-78

temperature 1.310 0.333 2.172 1 0.032
elevation -0.262 0.603 -0.786 1 0.434

FW width (intercept) 11.225 0.956 11.745 1 2.59 × 10-79

temperature 1.308 0.358 3.655 1 4.1 × 10-4

elevation -0.090 0.197 -0.458 1 0.648

Figure 3. Comparison of Erebia medusa forewing length (A), width (B), length/width ratio (C) among the stud-
ied populations: KH – Kojšovská hoľa (1246 m a. s. l.); ZL – Zlatá Idka (660 m a. s. l.), DB – Dobroslava (335 m 
a. s. l). Data are shown as boxplots with minimum, median and maximum values and 25% and 75% percentiles.
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The variation of forewing shape between populations was supported by ANOVA (F = 6.71, 
df = 56, p ˂ 0.0001) and further identified by principal component analysis (PCA) applied on the 
forewing landmarks. Changes in symmetry between the left and right forewings were not significant 
(ANOVA: F = 3.64, df = 28, p = 0.075). PCA revealed shape differences in the male forewings be-
tween the high elevation locality (Kojšovská hoľa, 1246 m a. s. l) and the low elevation sites. PC1 
accounted for 29.3% and PC2 for 18.2% of the detected variation between populations. Canonical 
variate analysis (CVA) carried out with three groups along the first two canonical variate axes (CV1 
and CV2) (Fig. 4) differentiated the KH population from the other two populations along CV1 (70% 
of the total variation). The ZL and DB populations were partially differentiated along the CV2 (30%) 
axis. The changes were detected in the area of the disk cell and the intersection with veins M1, M2 
(lm 1,6,7), in the apical area (lm 9,10) and the total margin of the forewing (lm 15–16). The results 
indicate that the forewing shape of males inhabiting the cold, high elevation site (Kojšovská hoľa) 
was more angular, elongated and narrower than male forewings from warmer sites at lower eleva-
tions (Zlatá Idka, Dobroslava). A significant shift and prolongation of the flight period was detected 
(in highlands (KH, 1246 m a. s. l): from the middle of June to early July – 18 days; in the lower area 
(ZL, 660 m a. s. l): from the end of May to the middle of June – 22 days). The flight periods of males 
started earlier and also reached maximum abundance earlier than in females (Suppl. material 3).

The forewing eyespots of male specimens from high elevation populations on Kojšovská hoľa 
(1246 m a. s. l.) had on average fewer white (μ = 2.95) and black spots (μ = 4.16) than males in the 
low elevation populations of Zlatá Idka (660 m a. s. l.) and Dobroslava (335 m a. s. l) (white spots: 
μ = 3.72, black spots: μ = 4.61), with a median difference of 1 for both white and black spots. In 
summary, with increasing elevation and decreasing temperature males tend to have fewer eyespots 
on average. Moreover, the overall number of white spots is lower than the number of black spots 
on the forewings.

The number of black spots on the dorsal side of the male forewing significantly differs between 
populations (Kruskal-Wallis test: p = 0.046), with Dunn’s post hoc test showing the biggest dif-
ference between populations KH and ZL (p = 0.013). The white colour pattern in the centre of the 
eyespots was also significantly different between the populations (Kruskal-Wallis test p = 0.012). 
The exact differences in the number of white spots between the populations KH (1246 m a. s. l.) 
vs ZL (660 m a. s. l) (p = 0.015) and KH (1246 m a. s. l.) vs DB (335 m a. s. l) (p = 0.006) were 
detected using Dunn’s post hoc test. The frequencies also varied depending on the location (Figs 5, 
7). Moreover, the overall difference between the number of black (Fig. 7) and white spots (Fig. 8) 
was confirmed with the Kruskal-Wallis test (p ˂  0.0001; Dunn’s post hoc tests KH: p ˂  0.0001; ZL: 
p ˂ 0.001; DB: p ˂ 0.001). A statistically significant correlation between black and white spots was 
examined using Spearman’s rank correlation coefficient (ρ) (ρ = 0.69; p ˂ 0.0001; KH: ρ = 0.59; 
p ˂ 0.001, ZL: ρ = 0.77; p ˂ 0.0001; DB: ρ = 0.65; p ˂ 0.0001).

Discussion
The morphology of Erebia medusa male forewings studied by methods of traditional and ge-

ometric morphometrics showed statistically significant differences between populations from low 
and high elevations differing in annual average temperatures. We found that larger butterflies were 
generally found in warmer habitats. Smaller and narrower shaped forewings with a fewer num-
ber of spots on the dorsal surface were detected in the cold habitat – Kojšovská hoľa (1246 m 
a. s. l.). The results of our study are consistent with previous findings of the impact of elevation 
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(Blanckenhorn and Demont 2004) and temperature (De Jong et al. 2010; Bowden et al. 2015) on 
the variability of morphological traits. Changes in forewing traits among populations in habitats 
with different climatic conditions may indicate their importance for adaptation to varying intensi-
ties of environmental factors.

According to the clinal variation detected as size differences between populations, our results 
are in line with the season-length effect described by the converse Bergmann’s rule, which 

Figure 4. CVA results: A. the variation in the forewing shape of studied populations along the first two canonical 
variate (CV1 and CV2) axes with 95% confidence ellipses of means for each group. Kojšovská hoľa (KH), Zlatá 
Idka (ZL), Dobroslava (DB); B. wireframe graph of the morphometric overlap in forewing shape according to CV1 
show deformation (dark blue line) from consensus configuration (sky blue line) associated to each canonical axis.
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states that depending on the season length, larger individuals can be found at lower elevations 
(Park 1949; Mousseau 1997). Our findings are consistent with the theory that the smaller size 
of butterflies at cold, high elevations is a response to decreased time available to grow and 
survive to the adulthood stage (Rowe and Ludwig 1991). A study by Kleckova and Klecka (2016) 
showed that lowlands provide optimal conditions for E. medusa, which may also contribute to 
the explanation of bigger individuals from warmer habitats observed in the area of Zlatá Idka 
and the Dobroslava locality. Our findings indicate that Erebia medusa has a similar strategy 
to avoid developmental constraints in colder environmental conditions, which are suboptimal 
for development, as in the case of Dryas iulia (Fabricius, 1775) (Mega 2014), when lower 
temperatures and low host-plant availability or quality (Pellegroms et al. 2009; Talloen et al. 
2009) is reflected in the smaller body size of butterflies. The longer and wider forewings of males 
from warmer areas can be explained by the longer availability of food plants, which enable the 
larvae to grow larger, as previously shown by Bowden et al. (2015) in the arctic butterfly species 
Boloria chariclea (Schneider, 1794) and Colias hecla (Lefèbvre, 1836), but also Juhász et al. 
(2016) in Melitaea athalia (Rottemburg, 1775).

Figure 5. The frequencies of black and white spots in the wing pattern of Erebia medusa from three studied 
habitats. KH – Kojšovská hoľa (1246 m a. s. l), ZL – Zlatá Idka (660 m a. s. l), DB – Dobroslava (335 m a. s. l).
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Results from geometric morphometrics demonstrate that the forewing shape of males inhabiting 
the cold, high elevation site (Kojšovská hoľa) was more angular, narrower and slightly elongated, 
while rounder wings were detected at low elevations. The obtained results are similar to the con-
clusions on wing shape variance of Speyeria diana (Wells et al. 2018) (Cramer and Stoll 1777) 
resulting from elevation differences. The morphological changes may be explained by various 
behavioural, functional or physiological mechanisms. From the functional aspect, changes of wing 
shape play a key role in flight aerodynamics (Park et al. 2010) and may enhance manoeuvrability, 
as shown by Dudley (2002), Shreeve et al. (2009), DeVries et al. (2010) and Cespedes et al. (2015). 
The rounder shape was shown to be effective when patrolling and to allow better escape from 
predators. Elongation of the wings at the Kojšovská hoľa locality may even be the result of poor 
nutrition of caterpillars, as shown in Paragre aegeria (Linnaeus, 1758) (Pellegroms et al. 2009). 
Elongated wings E. medusa were observed in migrating populations (Dudley and DeVries 1990) 
and in patrolling males (DeVries et al. 2010), probably due to the long endurance flight benefits 
(Dudley 2002; Dockx 2007; Altizer and Davis 2010). Therefore, our findings of elongation and 
changes of E. medusa wing shape are in accordance with the assumption that such changes, as-
sociated with more efficient gliding flight in windy high elevation areas, are required to minimise 
flight costs (Klok and Harrison 2009; DeVries et al. 2010; Cespedes et al. 2015; Wels et al. 2018; 
Le Roy et al. 2019a). The wing shape of males varies with elevation (Kojšovská hoľa vs Zlatá Idka 
and Dobroslava), which corresponds with the findings of Klok and Harrison (2009) or Wells et al. 
(2018), but also with latitude (Kojšovská hoľa and Zlatá Idka vs Dobroslava), which is consistent 
with the results of Sanzana et al. (2013) and Taylor-Cox et al. (2020). The shape variability of but-
terfly forewings exposed to the windy and cold conditions of the Kojšovská hoľa highlands may 
stem from the need to adapt to more demanding flight conditions, similarly as shown in research 
on insect flight performance by Combes and Dudley (2009). Our results are in accordance with the 
research of Le Roy et al. (2019a) and Chazot et al. (2016), presuming that sex-specific behaviour 
(Cespedes et al. 2015), habitat and interactions with predators are the main selective forces that 
contribute to butterfly wing shape and pattern evolution.

Figure 6. Graph of forewing pattern (dorsal surface) in E. medusa populations. KH – Kojšovská hoľa (1246 
m a. s. l), ZL – Zlatá Idka (660 m a. s. l), DB – Dobroslava (335 m a. s. l).
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Our findings of smaller male E. medusa in the high and cold environments of Kojšovská 
hoľa and larger males originating in the lowlands are in line with theory, which underlines the 
thermoregulatory function of such adjustments in the size and colour of the wings. However, our 
results on the number of eyespots are partly consistent with the findings of Cassel-Lundhagen 
et al. (2020) in Coenonympha arcania; thus, it seems that size is often related to abiotic factors, 
while colour patterns and spots on wings (predator escape) may be less associated with environ-
mental constraints.

In addition, the average number of eyespots on male forewings increased with average tempera-
ture and decreased with temperature and rising elevation. Our findings confirmed the observations 
from previous research on Erebia medusa in eastern Slovakia conducted by Slabý (1950). A sim-
ilar reduction of the forewing eyespot pattern in the colder conditions of northern areas was also 

Figure 7. The different pattern of male forewings depending on the number of black spots in the pattern: A. 2, 
B. 3, C. 4, D. 5, E. 6.
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demonstrated on a bigger scale in the case of Erebia euryale (Esper, 1805) by Tatarinov and Kulako-
va (2013). These results may be explained by the association of temperature during development and 
the plastic response of wing pattern colouration, as shown by Taylor-Cox et al. (2020) in Pararge 
aegeria (Linnaeus, 1758). The function of a higher number of eyespots on a hidden surface of wings 
in E. medusa males from lower and warmer areas can be considered as a secondarily acquired, used 
especially in sexual selection (mate choice) or in predation deflection related to basking.

Variability of shape and size, as well as pattern and colouration of wings, may be related to dis-
persal, migration, territoriality, courtship and interactions with predators that vary across habitats. 
Moreover, temporal isolation and a shift in flight time were observed among localities with respect 
to temperature, even within geographically close localities separated by elevation.

Conclusions
To summarise our observations, trends in size along an elevational gradient were in line with a 

converse Bergmann’s rule which states that size of body decreases with elevation. The wing shape 
variation showed that elongated wings, which allow for gliding flight to be maximised (Wootton 
1992; Lentink et al. 2007; Kovac et al. 2012) were detected in higher, colder areas, while more 
rounded wings providing better manoeuvrability (Dudley 2002) were observed in lower, warmer 
areas. Our study showed that the wing size, especially of E. medusa butterflies, was likely influ-
enced by temperature. Data indicates that spot reduction in cold locations is consistent with avoid-
ance of detection by predators, but in warmer locations increased spotting may be associated with 
deflection of attacks to marginal wing areas (Prudic et al. 2015; Ho et al. 2016).

The specific flight behaviour of male butterflies and wing morphological traits may provide 
better insight into their morpho-functional role, but further research is needed for this purpose.
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